SR BG simulation status (E deposit to the beam pipe)

2009/03/18 M.Iwasaki (Univ. of Tokyo)

Upstream SR simulation studies

SR power is much higher than current KEKB, then we start from SR BG estimation

1. Design the IP beam-pipe to avoid HER SR direct hits to the detector

2. Study of the energy deposit to the IP beam-pipe

For the SR BG study, we construct the beam line simulation based on GEANT4.

Simple beam pipe + 1st layer SVD + B-field of Q-magnets

Beam pipe design S.Uno

Conclusion @ MAC Feb.10, 2009

Based on the GEANT4 simulation, SR BG has been studied

1. Upstream SR

- Design of the IP beam-pipe to avoid SR from HER

To avoid the SR direct hit, we should Locate the beam pipe parallel to HER (22mrad from Belle solenoid), and Put a 4mm height SR mask

Study of the energy deposit to the IP beam-pipe
 The energy deposit from HER SR will be ~1kW (SR mask) ~1kW (taper)
 1kW deposit to the 4mm mask makes ~500 degree temperature rise
 → It is very hard to cool the beam pipe...

2. Backscattered SR

We need more MC statistics to study in detail.

We try to minimize the BG effect in our beam-pipe design, but SR power is so high that we cannot cool the beam-pipe

<u>New super-KEKB machine parameters with lower SR power</u> <u>are highly appreciated</u>

HER simulation

Energy deposit from upstream SR

Energy deposit from SR

 2σ beam

HER SR Mask 0.73kW HER taper 0.69kW LER SR Mask 20W LER taper 75W IP beam-pipe 15W

We have ~1kW Energy deposit at 4mm height SR mask...

New super-KEKB optics(1012a)

New super-KEKB optics has just been delivered

- Beam size at the Q-magnet

QC1L / QC2L : $\frac{1}{2}$ of the current one

- B-field of the Q-magnet

QC1L : x1.6 of the current one

- QC2L : same
- Same magnet length

In total, SR power is reduced to 80% (QC1L) or 25% (QC2L) of the current one

We'll re-estimate the SR BG based on the new optics

Beam size @ IR Q-magnets

HFR	OC2R	OC1R	OCSL	OC1L	OC2L							
OLD optics	74.5mm (5σ _x)	30.3	4.4	11.0	31.1	75.2						
New optics	69.0 (5σ _x)	30.1	6.3	14.4	16.5	35.4						
	LER Beam		1									
LER	QC2R	QC1R	QCSR	QCSL	QC1L	QC2L						
OLD	63.9 (5σ _x)	52.2	15.1	2.9	29.0	52.1mm						
New	66.3 (5σ _x)		10.7	2.9		34.4						

HER upstream SR energy 50 beam

SR hit to the IP beam pipe

Energy deposit from upstream SR

Energy deposit from SR

New optics (1012a) Gaussian beam 5σ tail cut

- We still have 100W Energy deposit at SR mask.

 \rightarrow See heating calculation by Yamaoka-san

OLD optics (sqrt 2σ beam)

HER: SR Mask 0.73kW HER taper 0.69kW LER : SR Mask 20W LER taper 75W IP beam-pipe 15W

Summary

1. Simulation studies for the Super-KEKB high-current option

- There expected huge energy deposit of ~1kW
 from HER SR in the old version Super-KEKB design
- With the current new optics, it is decreased to ~100W (which is x10 of the current KEKB)
- Detailed heating calculation / simulation is needed to design the cooling system (see Yamaoka-san's talk)
- We need to start the other BG source studies
- We will start the Super-KEKB nano-beam option studies
 Lower SR BG and HOM power are expected
 → Is it possible to use the smaller radius beam-pipe?

Back up

Beam line simulation setup

- Aperture of the Q-magnets ~ 5σ (= $5\sqrt{\epsilon\beta}$)
- Beam size 5σ (max = 5σ) or 2σ (max = 2σ)
- Beam shape : sqrt(x) shape

- The number of particles in a bunch HER : 4.1A / (1.6*10^-19)/(100kHz)/5000 = 0.5 *10¹¹ LER : 9.4A / (1.6*10^-19)/(100kHz)/5000 = 1.2 *10¹¹

Relationship between s-Belle and Super-KEKB

In Super-KEKB, crossing angle will be increased : 22mrad \rightarrow 30mrad

Belle beam pipe (and SVD??) axis at Super-KEKB

- Belle solenoid
- Center of the LER and HER (7mrad from Belle solenoid)
- HER axis (22mrad from Belle solenoid)

LER beam-line simulation

LER simulation

Upstream SR energy

SR energy (at IP)

X Contraction of the second seco

The SR energy from HER is very high (< \sim 100keV) \rightarrow We don't want the direct hits from HER SR at first

Energy deposit from HER SR

Why do we have so high energy deposit?

1. Increase the beam current

effect : x3

- 2. Change beam optics (QC2L)
 - x3 Beam size at the Q-magnet \uparrow
 - x7 B-field of the Q-magnet \uparrow
 - Same magnet length
 - No-bending component \downarrow

Critical Energy @ QC2L : 2keV for 10σ beam (KEKB)

56keV for 10σ beam (super-KEKB) effect : x28

 \rightarrow We have 3x28 ~ 100 times higher E deposit at super-KEKB

Current super-KEKB beam optics produces huge power SR

Total SR power produced at Q-magnet

- To check our simulation results,

we compare the total SR power at the QC2 magnet

- 1. GEANT4 simulation
 - (For 2_σ beam :corresponds to nominal Gaussian beam core) Total power = 3.3kW
- 2. Hand calculation (by Y.Funakoshi-san)

Total power = 2.9kW

- We also check that SR power produced at QC2 in our current KEKB is about 1/100 of super-KEKB, in GEANT4 simulation

Heat at the synchrotron light mask

T.Tsuboyama (KEK)

- The heat differential equation is solved by a 3D discrete finite difference method.
- The following model was made and calculated.
- The bottom surfaces are connected to a heat sink (0 °C)
- The other surfaces are heat insulated.
- Calculation was done with equal mesh size: 1 mm in x,y,z direction.

Material : copper is assumed (because of its good thermal conductivity)

Heat at the synchrotron light mask

T.Tsuboyama (KEK)

- •The temperature distribution Δt for the center slice after equilibration (in one second) is shown below.
- •The temperature goes up to $\Delta t = \sim 450$ degree.
- The heat dissipation to the mask should be of order 100W.
 Next step: reliable calculation by ANSYS or a similar tool.

SR (1kW) Mask																								
										424 344	275 225	196 164	154 131	135 114										
	4	8	12	17	24	33	46	66	100	167	150	124	102	83	57	41	30	23	17	12	9	5	3	
	4	7	11	16	23	31	41	56	77	100	100	90	78	64	49	37	28	21	16	12	8	5	3	
	3	7	10	15	20	27	35	45	57	68	70	66	59	50	41	32	25	19	15	11	8	5	2	
	3	6	9	13	17	23	29	36	43	48	50	48	44	39	32	27	21	17	13	10	7	4	2	
	2	5	8	11	14	18	23	27	32	35	36	35	33	29	25	21	17	14	11	8	6	4	2	
	2	4	6	9	11	14	17	20	23	25	26	26	24	22	19	16	14	11	9	7	5	3	2	
	1	3	5	6	8	10	12	14	16	17	18	18	17	15	14	12	10	8	6	5	4	2	1	
	1	2	3	4	5	7	8	9	10	11	11	11	11	10	9	8	7	5	4	3	2	2	1	

Change beam shape in MC

Energy deposit from SR

New optics (1012a) Gaussian beam

HER

SR Mask82WHER taper 60W $(5\sigma tail cut)$ 46W10W $(2\sigma tail cut)$

E deposit to the SR mask \rightarrow SR from beam core Her taper \rightarrow SR from beam tail part

E deposit to the Beam pipe

E deposit to the SR mask

SR maskへのE deposit (内側表面から、SR光が当たる。)

